网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
05-26【王好武】五教5106 吴文俊重点实验室代数学系列报告之249

题目: Sums of four polygonal numbers: precise formulas 

报告人:王好武,武汉大学

时间:5月26日(星期日)10:30

地点:五教5106

摘要: In this talk we give unified formulas for the numbers of representations of positive integers as sums of four generalized m-gonal numbers, and as restricted sums of four squares under a linear condition, respectively. The formulas are given as Z-linear combinations of Hurwitz class numbers. As applications, we prove several Zhi-Wei Sun's conjectures. As by-products, we obtain formulas for expressing the Fourier coefficients of $\vartheta(\tau,z)^4$, $\eta(\tau)^{12}$, $\eta(\tau)^4$ and $\eta(\tau)^8\eta(2\tau)^8$ in terms of the Hurwitz class numbers, respectively. The proof is based on the theory of Jacobi forms.


Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号图书馆VIP数学科学学院    邮箱:hzx@ustc.tsg211.com    邮编:230026
网站制作与维护:卫来科技 提供