网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
04-12【吴耀琨】五教5302 吴文俊数学重点实验室组合图论系列报告

题目:  Can you tell a tree from its branches?

报告人: 吴耀琨, 上海交通大学

时间: 4月12号下午 4:10-5:10

地点:五教5302

摘要: For each set $X$, an $X$-split  is a partition of  $X$ into two parts. For each $X$-split $\mathbf{S}$ and each $Y\subseteq X$, the restriction of $\mathbf S$ on $Y$ is the $Y$-split whose parts are obtained from  the parts of $\mathbf S$  by taking intersection with $Y$. For a graph $G$ with vertex set $V$, the $G$-coboundary size of a $V$-split $\mathbf S$ is the number of edges of $G$ having nonempty intersections with both parts of $\mathbf S$. Let $T$ be a tree without degree-two vertices. Let $V$ and  $L$ be its set of vertices and its set of leaves, respectively. For each positive integer $k$, a $k$-split of $L$ displayed by $T$ is an $L$-split which is the restriction of a $V$-split with $T$-coboundary size $k$,   while a score-$k$ split of $L$  displayed by $T$ is a $k$-split but not any $(k-1)$-split  of $L$ displayed by $T$. Buneman's  split equivalence theorem tells us that the tree $T$ is totally encoded by the  system of its   $1$-splits  of  $L$. We identify the finitely many exceptional cases in which the tree $T$ is not determined by its $2$-split system  or score-$2$ split system. In order to understand how this work may be generalized to   general $k$-split systems, we propose several conjectures and open problems on set systems and  generalized Buneman graphs.   


This is joint work with Chengyang Qian and Min Xie. A slides for this talk is available at https://math.sjtu.edu.cn/faculty/ykwu/data/Talk/2024split.pdf


Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号图书馆VIP数学科学学院    邮箱:hzx@ustc.tsg211.com    邮编:230026
网站制作与维护:卫来科技 提供