网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
09-11【赵国焕】管理楼1418 吴文俊数学重点实验室概率统计系列报告

报告题目: L\'evy-type operators with low singularity kernels: regularity estimates and martingale problem

报告人: 赵国焕 研究员 中科院数学与系统科学研究院

报告时间: 9月11日(周一) 10:00-11:00

报告地点:管理楼1418

摘要:We consider the linear non-local operator $\mathcal{L}$ denoted by \[\mathcal{L} u (x) = \int_{\mathbb{R}^d} \left(u(x+z)-u(x)\right) a(x,z)J(z)\,\mathrm{d} z.\] Here $a(x,z)$ is bounded and $J(z)$ is the jumping kernel of a L\'evy process, which only has a low-order singularity near the origin and does not allow for standard scaling. The aim of this work is twofold. Firstly, we introduce generalized Orlicz-Besov spaces tailored to accommodate the analysis of elliptic equations associated with $\mathcal{L}$, and establish regularity results for the solutions of such equations in these spaces. Secondly, we investigate the martingale problem associated with $\mathcal{L}$. By utilizing analytic results, we prove the well-posedness of the martingale problem under mild conditions. Additionally, we obtain a new Krylov-type estimate for the martingale solution through the use of a Morrey-type inequality for generalized Orlicz-Besov spaces. This is based on joint work with Eryan Hu (Tianjin University).


Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号图书馆VIP数学科学学院    邮箱:hzx@ustc.tsg211.com    邮编:230026
网站制作与维护:卫来科技 提供