网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
08-09【廖羽晨】二教2104 吴文俊数学重点实验室概率统计系列报告

报告题目:RSK dynamics, TASEP, and the KPZ fixed point

报告人:廖羽晨 威斯康星大学麦迪逊分校

报告时间:2023.08.09  09:00-10:00  

地点:二教2104 

摘要:The KPZ fixed point, constructed by Matetski-Quastel-Remenik, is a scaling invariant Markov process that is believed to be the universal scaling limit of a large family of random interface growth models, forming the so-called Kardar-Parisi-Zhang university class. In this talk, I will discuss a new way of exactly solving (a discrete-time version of) the totally asymmetric simple exclusion process, a prototypical discrete model in the KPZ universality class.  It is based on a classical combinatorial bijection known as the Robinson-Schensted-Knuth correspondence and standard non-intersecting path constructions. This allows a more systematic derivation for the transition probability formula compared to the original work of MQR and also leads to natural generalizations with particle and time inhomogeneity. Time permitting I will also discuss how to obtain the KPZ fixed point as a scaling limit of TASEP and possible generalizations when there is spatial or temporal inhomogeneity. The talk is based on joint work with Elia Bisi, Axel Saenz and Nikos Zygouras.


Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号图书馆VIP数学科学学院    邮箱:hzx@ustc.tsg211.com    邮编:230026
网站制作与维护:卫来科技 提供