网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
07-15【张 成】管楼1418 吴文俊数学重点实验室数学物理系列报告之2021-05

题目: On the inverse scattering transform for integrable PDEs on the half-line

报告人:张成,上海大学

时间:2021年7月15日 (星期四)下午 2:30-4:00

地点:东区管理科研楼1418教室

摘要: In this talk, we provide an inverse scattering transform for integrable PDEs on the half-line. The method is based on the notions of integrable boundary conditions as well as the Sklyanin-type double-row monodromy matrix. Taking the nonlinear Schrodinger (NLS) equation as our primary example. Following the double-row monodromy matrix formalism, integrable boundary conditions for NLS are encoded into constraints between the so-called reflection matrices and the time-part of the Lax pair of NLS. This gives rise to a hierarchy of reflection matrices, which is accompanied by a hierarchy of integrable boundary conditions. Then, by establishing a scattering system for the double-row monodromy matrix for NLS on the half-line, we obtain possible analytic and spectral properties of the scattering functions. This allows us to set up the inverse description of the half-line problem with integrable boundary conditions in terms of a Riemann-Hilbert problem. Solutions to the Riemann-Hilbert problems lead to solutions of NLS on the half-line subject to arbitrary-order integrable boundary conditions. In particular, multi-soliton solutions can be derived for the model.

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号图书馆VIP数学科学学院    邮箱:hzx@ustc.tsg211.com    邮编:230026
网站制作与维护:卫来科技 提供