网站首页   |  实验室概况   |  研究团队   |  新闻中心   |  学术交流   |  学术报告   |  实验室年报   |  联系我们  
  实验室的建设目标是:凝聚力量,不断做出原始创新工作,建成有国际影响的研究中心、学术交流中心和培养一流数学人才的平台。
  当前位置:首页  学术报告
06-07【郏 浩】吴文俊数学重点实验室微分方程系列报告之11

题目:Long time dynamics of 2d Euler equation and nonlinear inviscid damping

报告人:郏浩 (University of Minnesota)

时间:6月7日周一上午10:10-11:10

地点:Zoom会议ID:7361907370 密码:122595

摘要:It is well known that the incompressible 2d Euler equation is globally well posed for smooth initial data. The long time behavior of smooth solutions is however very difficult to understand, due to the lack of global relaxation mechanism. An important conjecture predicts that for generic solutions the vorticity field weakly but not strongly converges, as time goes to infinity. In this talk, I will focus on the simpler problem of nonlinear asymptotic stability of monotone shear flows in a channel, where the dynamics can be described precisely and are consistent with the conjectured behavior. The main mechanism for stabilization is nonlinear inviscid damping. This is based on joint work with Alex Ionescu.

Copyright © 中国科学院吴文俊数学重点实验室 All rights reserved.    皖ICP备05002528号
地址:安徽省合肥市金寨路96号图书馆VIP数学科学学院    邮箱:hzx@ustc.tsg211.com    邮编:230026
网站制作与维护:卫来科技 提供